USN

15CS33

Third Semester B.E. Degree Examination, Jan./Feb. 2021 Data Structures and Applications

Time: 3 hrs. Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- 1 a. Explain the functions supported by C to carryout dynamic masonry allocation with example.
 - b. Summarize the advantages and disadvantages of using record oriented fixed length for storing strings. (04 Marks)
 - c. Write a C program with structure definition and variable declaration to read and display information about 5 items using nested structures. Consider the following fields like, Itemcode, Itemprice, Item expiring date (dd mm yy) (06 Marks)

OR

- 2 a. What is the degree of polynomial? With a C function to add 2(two) polynomials. (08 Marks)
 - b. With a neat diagram, explain the linked representation of sparse matrix for Fig Q2(a)

$$\begin{bmatrix} 15 & 0 & 2 & 0 \\ 0 & 21 & 0 & 13 \\ 32 & 0 & 0 & 45 \\ 0 & 0 & 51 & 0 \end{bmatrix}_{4\times2}$$

Fig Q2(b) sparse matrix

(05 Marks)

c. Differentiate structure and version.

(03 Marks)

Module-2

3 a. Write a C program to implement stack operation.

(08 Marks)

b. Convert the following infix expression to postfix form using stack

$$(A + B \uparrow D)/(E - F) + G$$
.

(04 Marks)

c. Define Ackermann function and find the value of A(1, 3).

(04 Marks)

OR

4 a. Write a C program to implement Oracular queue operations.

(08 Marks)

b. Evaluate the following postfix expression 3, 5, +, 6, 4 -, *, 4, 1, -,2, \uparrow , +.

(04 Marks)

c. Write a C program to implement Tower of Hanoi using recursion.

(04 Marks)

Module-3

- 5 a. Write C functions to perform the following operations on singly linked list
 - i) Insert a node at the beginning of list
 - ii) Delete a node at the end of list

(10 Marks)

- b. Define the following terms with example
 - i) Doubly linked list
 - ii) Circular singly linked list
 - iii) Header linked list.

(06 Marks)

OR

- 6 a. Write a C program to insert newnode at a specified position in a doubly linked list. (08 Marks)
 - b. Write a C program to implement Queue operations using singly linked list. (08 Marks)

Module-4

Draw the Binary Search Tree (BST) for the following data and transverse the tree in 7 i) Inorder ii) preorder iii) postorder.

14, 15, 4, 9, 7, 18, 3, 5, 16, 4, 20, 17, 9, 14, 5

(05 Marks)

b. Draw the binary tree to represent the following expression

A + (B - C) * (E - F)/G.

(04 Marks)

- c. Explain the following with example
 - i) Complete Binary tree
 - ii) Height of the tree
 - iii) Skewed binary tree

iv) Binary tree.

(07 Marks)

OR

Construct the Binary Search Tree using inorder and preorder sequence : 8

> Inorder Preorder

OBK

C F G B Q A C

G Α K F

E D H R P

DERH

(06 Marks)

Write a C function to construct the BST.

c. What is the advantage of threaded binary tree over binary tree?

(07 Marks) (03 Marks)

Module-5

9 For the given graphs, show Fig Q9(a) the adjacency matrix and linked representation of the graph.

Fig Q9(a) (06 Marks)

- Explain hashing with an example. How do you resolve collision?
- How does an append mode in a file opening differ from the write mode?

(06 Marks) (04 Marks)

OR^

Draw the graph G, for information stored in memory as shown below:

ĸ.										
	NODE	A	В		E		D	C		Start = 1
	NEXT	7	4	0	6	8	0	2	3	Avail $= 5$
	ADJ	1	2	2	5		7	9	7	
		1	1	<u> </u>	1			77	0	•

Dest	2	6	4		6	7	4		4	6	
Link	10	3	6	0	0,	0.	0	4	0	0	Avail $= 8$
	1	2	3	4	5	6	7	8	9	10	_

(06 Marks)

Sort the following list of numbers using Radix sort

366, 3481, 1432, 3618, 4235, 5380, 1289, 3211, 5437

(05 Marks)

Summarize the features of relative file organization.

(05 Marks)